
Comprehensive Guide to
SAST Implementation

A Step-by-Step Guide To Implement
Static Application Security Testing (SAST)

practical-devsecops.com

https://www.practical-devsecops.com/
https://www.practical-devsecops.com/

01 Introduction to SAST and How it Works

02 Understanding Your Codebase

03 Setting Up Your SAST Environment

04 Pairing SAST Tools with CI/CD Pipelines

05 Creating a Baseline Scan

06 Analyzing and Addressing Issues

07 Creating Custom Rules

08 Measuring and Reporting on Success

09 Best Practices for SAST

10 SAST Strengths and Weaknesses

CO N T E N T S

As software development becomes increasingly
complex and fast-paced, ensuring the security of
your code is more important than ever. Static
Application Security Testing (SAST) is one of the key
tools for achieving this goal.

SAST is a type of security testing that analyzes
application source code and identifies potential

vulnerabilities. Unlike Dynamic Application Security
Testing (DAST), which tests applications while they
are running, SAST focuses on identifying issues
within the code itself. This approach allows devel-
opers to detect and address vulnerabilities early in
the development process, reducing the likelihood of
security issues arising in production.

Build
CI builds the code for

every code

SAST
Run SAST tool to find

security issues

Reports
Analyze the reports
locally or centrally

Tune the rulesets
Fine tune the rulesets
for particular project

Metrics
Create dashboards for

stakeholders

SAST - Workflow

Introduction to SAST
and How It Works

CHAPTER 1

Comprehensive Guide to SAST Implementation

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

1

ebook

https://www.practical-devsecops.com/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.linkedin.com/company/practical-devsecops/

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

2

Ch 1: Introduction to SAST and How It Works ebook

SAST can also identify coding practices that are not necessarily vulnerabilities but
may lead to potential security issues.

NOTE

SAST tools scan application source code
to identify potential vulnerabilities.

SAST tools use a set of predefined rules
or signatures to detect known
vulnerabilities, such as SQL injection or
Cross-Site Scripting (XSS) attacks.

SAST Tools Scans Code

Applies Security Rules

SAST tools generate a report of the
issues detected, including details on
the nature of the vulnerability and the
location in the codebase where it was
found.

The information about the
vulnerabilities can be used by
developers to prioritize and address
issues in a timely manner.

Generates a Report

Prioritize and Address Issues

Application Source Code

SAST Tool Engine

Vulnerability Detection

Vulnerability Report

Developers/Security Teams

How Does SAST Work?

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

Understanding
Your Codebase

CHAPTER 2

By assessing the scope
of the codebase,
and identifying key
components and
libraries, it is possible to
understand the
codebase better and
implement an effective
SAST workflow.

“
Comprehensive Guide to SAST Implementation

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

3

Before implementing a SAST workflow, it is essen-
tial to have a good understanding of the codebase.

Step 1: Assessing the Scope of the Codebase

Identify all the applications and modules that need
to be scanned. Ensure all relevant code is included
in the scan to identify all potential vulnerabilities.

Step 2: Identify Key Components and Libraries
in the Codebase

Identify third-party libraries and frameworks that
the application relies on.

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

CHAPTER 3

Comprehensive Guide to SAST Implementation ebook

Setting Up Your
SAST Environment

Before implementing SAST, setting up an appropriate
environment for running scans is essential.

What does it entail to setup a SAST environment?

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

4

SAST Tools Scans Code

Application Code

SAST Engine

Configuration

- Configure rules
- Specify scan settings
- Set up scan frequency
- Define thresholds for severity levels

1

Scanning

- Parse and analyze source code
- Check for vulnerabilities
- Report results

2

Vulnerability Detection

- Identify security vulnerabilities
- Evaluate potential impact of

vulnerabilities
- Assign severity levels to vulnerabilities
- Provide details on the location of the

vulnerabilities

3

Reporting

- Generate reports on vulnerabilities
and code quality

- Provide actionable guidance on how to
fix issues

- Share information with developers and
security teams

4

Integration

- Integrate with other security tools
- Connect with issue tracking systems
- Embed scanning into the development

pipeline

5

Customization

- Define custom rules for specific
security scenarios

- Modify severity levels based on the
organization's risk profile

6

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

Ch 3: Setting Up Your SAST Environment

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

5

Defining the scope of the SAST program is essential to tailor it to an
organization's needs and ensure effective vulnerability identification.

Step 1: Define the Scope of the SAST Environment

- Identify the applications and codebases to be scanned.

- Determine the frequency of scans.

Select the appropriate SAST tool for your organization's needs and consider
the following factors:

Step 2: Selecting Your SAST Tool

- SAST tool’s support for scanning the programming languages in the codebase.

- The level of expertise required to use the tool.

- Choose a tool that fits your organization's needs and budget.

- Research and compare available SAST tools.

- If there is time, a Proof of Concept with your shortlisted SAST tools on your
codebase would reveal the actual effectiveness of a tool.

- There are plenty of other considerations in selecting a SAST tool, some of which
are discussed in Chapter 4, “Pairing SAST Tools With CI/CD Pipelines”

ebook

Certified DevSecOps Professional (CDP)

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/
https://www.practical-devsecops.com/certified-devsecops-professional/

Ch 3: Setting Up Your SAST Environment

Tool Name Category Description

SonarQube Open-source platform for continuous code quality
and security analysis of Java, C++, C#, Python, and
more.

Quality & Security

A comprehensive and scalable SAST solution that
covers multiple programming languages and offers
various integration options with development
environments.

EnterpriseCheckmarx CxSAST

Delivers SAST in the cloud, offering in-depth and
precise coverage of code security weaknesses while
remaining easy to use and accessible.

EnterpriseVeracode Static
Analysis

Offers powerful SAST capabilities for identifying
vulnerabilities in a wide range of programming
languages, including Java, .NET, and C/C++.

EnterpriseFortify Static Code
Analyzer

Open-source SAST tool that can be easily integrated
with JavaScript development environments, providing
automatic error reporting and suggestions for fixing
security issues.

JavaScriptESLint

Offers advanced capabilities in both SAST and DAST
that enable users to quickly find and eliminate
vulnerabilities in their code.

Advanced AnalysisCodeSonar

Open-source tool that analyzes Objective-C and Swift
code for iOS applications, focusing on detecting
memory leaks, null pointers, and other common
vulnerabilities.

MobileInfer

Here are some of the
most widely used SAST tools

ebook

Ch 3: Setting Up Your SAST Environment

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

7

Installing and configuring a SAST tool for your environment may involve
installing additional plugins or dependencies to ensure the tool can run
effectively, and efficiently.

Step 3: Installing and Configuring Your SAST Tool

- Install the SAST tool on appropriate machines.

- Configure the tool to match your organization's development environment.

Before running your first SAST scan, it is essential to configure your scan
settings appropriately, which includes:

Step 5: Configuring Your Scan Settings

- Defining the scope of the scan, for example, the project or the folder that
needs scanning.

- Setting up authentication for accessing the codebase.

- Defining any custom rules or signatures you want the tool to use.

- Define scan policies to ensure scans are consistent and thorough.

- Optionally, you can also determine how to handle false positives and negatives.

Integrate the SAST tool with your build process to automate scanning.

SAST tools can be configured to run on Continuous Integration builds, nightly
builds, scheduled builds, and continuous delivery pipelines as well. Choosing
the point of integration in the build system for a SAST tool depends on the size
of the codebase, the time the SAST tool takes for a scan, the rule sets that are
present in the SAST tool, and many other factors that are directly proportional
to the efficiency and effectiveness of a scan.

Also, set up notifications and alerts for scan results ranging from reports being
sent to email addresses, chat systems, collaboration systems, and other places
where developers, and operations flock together.

Step 4: Integrate With Your Build Process

To ensure that your SAST scans can run efficiently and effectively, setting up a
dedicated SAST server is important.

The server where a SAST tools is planned to be installed, should have
adequate processing power, and memory to handle the workload of running
frequent scans on your codebase.

Step 6: Setting Up Your SAST Server

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

Jenkins Server

A Jenkins server can also be integrated with SAST
tools through a plugin, such as OWASP

Dependency Check or SonarQube, to provide
additional security checks during the build process.

Git Server
GitHub, GitLab, Bitbucket

The Git server (e.g., GitHub, GitLab,
Bitbucket) hosts the source code of

the application.

Overall, such integration helps to ensure that the application code is secure and free of vulnerabilities
before it is deployed to production.

Ch 3: Setting Up Your SAST Environment

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

8

Finally, to ensure that your SAST workflow runs smoothly, it is important to set
up a pipeline that automates running scans and analyzing results.

Setting up a SAST pipeline can involve using tools such as Jenkins or GitLab to
automate the scanning process and trigger alerts when potential
vulnerabilities are detected.

Step 7: Setting Up Your SAST Pipeline

- Provide training to developers on how to use the SAST tool.

- Communicate the importance of SAST in the development process.

Step 8: Train Developers on SAST Usage

ebook

GitLab CI Server

The GitLab CI server is responsible
for building, testing, and deploying
the application based on the code
changes pushed to the Git server.

SAST Tool
e.g. Checkmarx, Fortify

The SAST tool (e.g., Checkmarx,
Fortify) analyzes the source code to
identify security vulnerabilities and

provide a report.

Git Client
e.g. Git CLI, Git Plugin

Jenkins Plugin
e.g. OWASP Dependency,

Check, Sonar Qube
The Git client (e.g., Git CLI, Git

plugin) interacts with the Git server
and fetches the source code to be

scanned by the SAST tool.

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

CHAPTER 4

Comprehensive Guide to SAST Implementation

Pairing SAST Tools
With CI/CD Pipelines

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

9

Software development
teams are under
increasing pressure to
deliver secure
applications quickly.
Integrating SAST into
the CI/CD (Continuous
Integration/Continuous
Delivery) pipeline is
crucial to achieving
this goal.

“
The traditional approach leads to costly delays,
and vulnerabilities may go undetected. On the
other hand, CI/CD pipelines aim to automate the
software development process from start to
finish, from building to testing and deployment.

By integrating SAST into CI/CD pipelines,
developers can identify and remediate security
vulnerabilities early in the development process.
Pairing SAST tools with CI/CD pipelines saves time
and money and ensures that security issues are
detected and resolved quickly.

Why Pair SAST Tools With CI/CD Pipelines?

When choosing a SAST tool for your CI/CD
pipeline, it is essential to consider the following:

Integration with CI/CD pipelines: Choose a tool
that can easily integrate with your CI/CD pipeline.

False positive rate: SAST tools often generate
false positives, which can be time-consuming and
costly to investigate. Choose a tool with a low
false positive rate.

Ease of use: Choose a tool that is easy to set up
and use.

Choosing the Right SAST Tool
for Your CI/CD Pipeline

ebook

Certified DevSecOps Professional (CDP)

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/
https://www.practical-devsecops.com/certified-devsecops-professional/

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

10

Ch 4: Pairing SAST Tools With CI/CD Pipelines

Most SAST tools offer plugins for popular CI/CD platforms like Jenkins, GitLab,
and TravisCI.

The following steps outline how to integrate SAST tools into a CI/CD pipeline

Step 1: Install the SAST tool in the CI/CD environment.

Step 2: Configure the SAST tool to scan the codebase during the build process.

Step 3: Specify the SAST tool to fail the build if any critical vulnerabilities are detected.

Step 4: Configure the CI/CD pipeline to generate reports on the vulnerabilities detected.

Step 5: Schedule periodic scans to detect new vulnerabilities as the codebase evolves.

Steps To Integrate SAST Tools Into CI/CD Pipelines

After integrating SAST tools into your CI/CD pipeline, you will receive reports on
vulnerabilities detected. It is crucial to have a process for interpreting these results
and prioritizing remediation efforts. It is recommended to triage the findings by
severity level and prioritize the critical ones.

Interpreting the Results

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

Creating a Baseline Scan

After setting up your SAST environment, it's time
to create a baseline scan. A baseline scan provides
a starting point for measuring progress and
identifying vulnerabilities in your codebase.

Choose a codebase

Run the scan

Set up the scan

Review the results

CHAPTER 5

Comprehensive Guide to SAST Implementation

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

11

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

01 02

03

05

04

06

Review the results of your SAST scans to
identify any vulnerabilities or weaknesses
in your codebase.

Prioritize the issues based on their
severity and potential impact on your
codebase, which will help you focus on
the most critical issues first.

Assign tasks to your development team
to address the issues. Be specific about
what needs to be done, and guide how to
fix the issues.

Monitor progress to ensure that issues
are being addressed in a timely
manner. Use dashboards and reporting
to keep track of progress and identify
any roadblocks.

Verify fixes: Once the issues have been
addressed, verify that the fixes have
been implemented correctly. Re-run
scans to ensure that the vulnerabilities
have been resolved.

Communicate with stakeholders
such as your security team and project
managers, to ensure they know the
issues and the steps to address them.
Provide regular updates to keep them
informed of progress.

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

12

CHAPTER 6

Comprehensive Guide to SAST Implementation

Analyzing and
Addressing Issues
Analyzing and addressing issues is critical in SAST
implementation. Here are the steps to analyze
and address issues found in your codebase:

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

Comprehensive Guide to SAST Implementation

CHAPTER 7

Creating Custom Rules
Creating custom rules is a powerful way to extend
the functionality of your SAST tool and tailor it to
your specific needs. Here are some steps to create
custom rules:

1. Identify areas of your codebase where you want
to enforce additional security measures. This
could include areas where you have identified
vulnerabilities in the past or areas where you
want to enforce additional security best practices.

2. Define the rule that you want to enforce.
This could be a specific coding practice, such as
enforcing the use of parameterized queries, or a
broader rule, such as enforcing a specific security
policy.

3. Configure the rule in your SAST tool. This may
involve writing custom code or configuring the
tool using the tool's user interface.

4. Run the scan and review the results. Identify any
areas where the custom rule has been violated.

5. Address any issues that the custom rule has
identified. This may involve working with your
development team to change the codebase.

6. Monitor the results of your scans to ensure that
the custom rule is being enforced effectively. Use
dashboards and reports to track progress and
identify areas for improvement.

7. Continuously improve your custom rules by
analyzing results, identifying areas for
improvement, and implementing changes to
optimize your scans.

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

13

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

Comprehensive Guide to SAST Implementation

CHAPTER 8

Measuring and
Reporting on Success

Here we present some of the KPIs that are
essential for measuring success:

- Gives an idea of the risk level of your codebase.

- Helps prioritize efforts in addressing issues.

Number of vulnerabilities identified:

- Determines how effective remediation efforts
have been.

The number of vulnerabilities addressed:

- Measures the efficiency of your SAST workflow.

- Metrics on the number of vulnerabilities identified
and addressed.

- Time it takes to remediate issues.

Time to identify and address vulnerabilities:

Defining KPIs

It's important to report on the success of your
SAST implementation to stakeholders. Reports
can include:

Reports can be shared with management,
developers, and other stakeholders to
demonstrate the value of the SAST program.

Reporting Success to Stakeholders

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

14

One of the essential
aspects of any security
program is measuring
its success. Measuring
success in SAST
implementation
requires defining the
Key Performance
Indicators (KPIs) that
will help you determine
the program's
effectiveness.

“
ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

15

CHAPTER 9

Comprehensive Guide to SAST Implementation

Best Practices for SAST

To get the most out of SAST,
it's important to follow best
practices.

Starting with a small codebase can help you get
familiar with the SAST tool and the workflow.

Prioritizing issues based on risk level can help
you first address the most critical issues.

Involving developers in the SAST process can
help increase buy-in and improve the overall
security culture.

Scheduling regular scans can help ensure that
the codebase is always up-to-date with the latest
security standards.

Creating custom rules can help identify issues
that are specific to your codebase.

Automating the SAST workflow can help reduce
the time it takes to identify and address
vulnerabilities.

Continuously monitoring the codebase can help
identify new issues that may arise.

1

2

3

4

5

6

7

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

16

CHAPTER 10

Comprehensive Guide to SAST Implementation

SAST Strengths and Weaknesses
Static Application Security Testing (SAST) is a valuable tool in a
comprehensive security program, but like any security tool, it has its
strengths and weaknesses. Understanding the strengths and weaknesses
of SAST is crucial in using it effectively in your security program.

Static Analysis is easy
to get started and
usually straight
forward. Can do both
data flow and control
flow analysis.

Strengths Weaknesses

By its nature, static
analysis is prone to
high levels of false
positives and takes
considerable time. Can
not find runtime and
business logic bugs.

S W

Threats

Many Tools doesn't fit
into modern CI/CD
pipelines. Lack of
handling False
positives locally is a big
show stopper.

T

Opportunities

Fast feedback if set
properly. Can be
configured to reduce
false positives. Support
for many languages
available.

O

ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

Can produce false positives and
false negatives

Cannot detect certain types of
vulnerabilities, such as design flaws

Can analyze code at any stage of
development

May not detect vulnerabilities that
require runtime data

Can analyze large codebases quickly

May require specialized knowledge
to configure and use effectively

Can be integrated into
development processes for early
vulnerability identification

Can identify common
vulnerabilities and coding errors

May not be suitable for all types of
applications or programming
languages

Can be automated and integrated
into CI/CD pipelines

May not be effective at identifying
complex vulnerabilities or those
that require a deep understanding
of the codebase

Can help enforce coding standards
and best practices

WeaknessesStrengths

www.practical-devsecops.com @pdevsecops @pdevsecops Practical DevSecOps

17

Ch 10: SAST Strengths and Weaknesses ebook

https://www.linkedin.com/company/practical-devsecops/
https://twitter.com/pdevsecops
https://www.facebook.com/pdevsecops
https://www.practical-devsecops.com/

© 2023 Hysn Technologies Inc, All rights reserved

Become a Certified
DevSecOps Professional

Get Started

https://www.practical-devsecops.com/
https://www.practical-devsecops.com/certified-devsecops-professional/

